Document Type
Article
Department/Program
Geology
Journal Title
Climate of the past
Pub Date
2015
Volume
11
Issue
12
First Page
1587
Abstract
Small glaciers and ice caps respond rapidly to climate variations, and records of their past extent provide information on the natural envelope of past climate variability. Millennial-scale trends in Holocene glacier size are well documented and correspond with changes in Northern Hemisphere summer insolation. However, there is only sparse and fragmentary evidence for higher-frequency variations in glacier size because in many Northern Hemisphere regions glacier advances of the past few hundred years were the most extensive and destroyed the geomorphic evidence of ice growth and retreat during the past several thousand years. Thus, most glacier records have been of limited use for investigating centennial-scale climate forcing and feedback mechanisms. Here we report a continuous record of glacier activity for the last 9.5 ka from southeast Greenland derived from high-resolution measurements on a proglacial lake sediment sequence. Physical and geochemical parameters show that the glaciers responded to previously documented Northern Hemisphere climatic excursions, including the '8.2 ka' cooling event, the Holocene Thermal Maximum, Neoglacial cooling, and 20th century warming. In addition, the sediments indicate centennial-scale oscillations in glacier size during the late Holocene. Beginning at 4.1 ka, a series of abrupt glacier advances occurred, each lasting similar to 100 years and followed by a period of retreat, that were superimposed on a gradual trend toward larger glacier size. Thus, while declining summer insolation caused long-term cooling and glacier expansion during the late Holocene, climate system dynamics resulted in repeated episodes of glacier expansion and retreat on multi-decadal to centennial timescales. These episodes coincided with ice rafting events in the North Atlantic Ocean and periods of regional ice cap expansion, which confirms their regional significance and indicates that considerable glacier activity on these timescales is a normal feature of the cryosphere. The data provide a longer-term perspective on the rate of 20th century glacier retreat and indicate that recent anthropogenic-driven warming has already impacted the regional cryosphere in a manner outside the natural range of Holocene variability.
Recommended Citation
Balascio, N. L.; D'Andrea, W. J.; Balascio, N. L.; and Bradley, R. S., Glacier response to North Atlantic climate variability during the Holocene (2015). Climate of the past, 11(12), 1587-1598.
10.5194/cp-11-1587-2015
DOI
10.5194/cp-11-1587-2015