Document Type

Article

Department/Program

Physics

Journal Title

Physical Review Letters

Pub Date

2012

Volume

108

Issue

24

Abstract

The nature of magnetic order and transport properties near surfaces is a topic of great current interest. Here we model metal-insulator interfaces with a multilayer system governed by a tight-binding Hamiltonian in which the interaction is nonzero on one set of adjacent planes and zero on another. As the interface hybridization is tuned, magnetic and metallic properties undergo an evolution that reflects the competition between antiferromagnetism and (Kondo) singlet formation in a scenario similar to that occurring in heavy-fermion materials. For a few-layer system at intermediate hybridization, a Kondo insulating phase results, where magnetic order and conductivity are suppressed in all layers. As more insulating layers are added, magnetic order is restored in all correlated layers except that at the interface. Residual signs of Kondo physics are however evident in the bulk as a substantial reduction of the order parameter in the 2 to 3 layers immediately adjacent to the interfacial one. We find no signature of long-range magnetic order in the metallic layers.

DOI

10.1103/PhysRevLett.108.246401

Share

COinS