Document Type
Article
Department/Program
Geology
Journal Title
Journal of Geophysical Research-Earth Surface
Pub Date
2013
Volume
118
Issue
2
First Page
1132
Abstract
Wind erosion is a significant environmental problem that removes soil resources from sensitive ecosystems and contributes to air pollution. In regions of shallow groundwater, friable (puffy) soils are maintained through capillary action, surface evaporation of solute-rich soil moisture, and protection from mobilization by groundwater-dependent grasses and shrubs. When a reduction in vegetation cover occurs through any disturbance process, there is potential for aeolian transport and dust emission. We find that as mean gap size between vegetation elements scaled by vegetation height increases, total horizontal aeolian sediment flux increases and explains 58% of the variation in total horizontal aeolian sediment flux. We also test a probabilistic model of wind erosion based on gap size between vegetation elements scaled by vegetation height (the Okin model), which predicts measured total horizontal aeolian sediment flux more closely than another commonly used model based on the average plant area observed in profile (Raupach model). The threshold shear velocity of bare soil appears to increase as gap size between vegetation elements scaled by vegetation height increases, reflecting either surface armoring or reduced interaction between the groundwater capillary zone and surface sediments. This work advances understanding of the importance of measuring gap size between vegetation elements scaled by vegetation height for empirically estimating Q and for structuring process-based models of desert wind erosion in groundwater-dependent vegetation.
Recommended Citation
Vest, Kimberly R.; Elmore, Andrew J.; Kaste, James M.; and Okin, Gregory S., Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models (2013). Journal of Geophysical Research-Earth Surface, 118(2), 1132-1146.
10.1002/jgrf.20048
DOI
10.1002/jgrf.20048