Document Type
Article
Department/Program
Biology
Journal Title
Environmental Toxicology and Chemistry
Pub Date
2013
Volume
32
Issue
1
First Page
32
Abstract
Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemicalGCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemicalclimate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Environ. Toxicol. Chem. 2013;32:3248. (c) 2012 SETAC
Recommended Citation
Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; and Maryoung, Lindley A., Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks (2013). Environmental Toxicology and Chemistry, 32(1), 32-48.
https://doi.org/10.1002/etc.2043
DOI
https://doi.org/10.1002/etc.2043