Document Type

Article

Department/Program

Computer Science

Journal Title

PHYSICAL REVIEW D

Pub Date

6-14-2017

Volume

95

Issue

11

Abstract

We report a calculation of the nucleon axial form factors G(A)(q)(Q(2)) and G(A)(q)(Q(2)) for all three light quark flavors q is an element of{u, d, s} in the range 0 <= Q(2) less than or similar to 1.2 GeV2 using lattice QCD. This work was done using a single ensemble with pion mass 317 MeVand made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent z expansion. From G(A)(q)(Q(2)), we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector G(P)(u-d)(Q(2)), we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We find that the disconnected contributions to G(P) form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors.

DOI

10.1103/PhysRevD.95.114502

Share

COinS