Document Type
Article
Department/Program
Biology
Journal Title
Applied and Environmental Microbiology
Pub Date
12-2023
Publisher
ASM Journals
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Since 1989, investigations into viral ecology have revealed how bacteriophages can influence microbial dynamics within ecosystems at global scales. Most of the information we know about temperate phages, which can integrate themselves into the host genome and remain dormant via a process called lysogeny, has come from research in aquatic ecosystems. Soil environments remain under-studied, and more research is necessary to fully understand the range of impacts phage infections have on the soil bacteria they infect. The aims of this study were to compare the efficacy of different prophage-inducing agents and to elucidate potential temporal trends in lysogeny within a soil bacterial community. In addition to mitomycin C and acyl-homoserine lactones, our results indicated that halosulfuron methyl herbicides may also be potent inducing agents. In optimizing chemical induction assays, we determined that taking steps to reduce background virus particles and starve cells was critical in obtaining consistent results. A clear seasonal trend in inducible lysogeny was observed in an Appalachian oak-hickory forest soil. The average monthly air temperature was negatively correlated with inducible fraction and burst size, supporting the idea that lysogeny provides a mechanism for phage persistence when temperatures are low and host metabolism is slower. Furthermore, the inducible fraction was negatively correlated with both soil bacterial and soil viral abundance, supporting the idea that lysogeny provides a mechanism for temperate phage persistence when host density is lower. The present study is the first of its kind to reveal clear seasonal trends in inducible lysogeny in any soil.
Recommended Citation
Jacoby, Melaina L.; Hogg, Graham D.; Assaad, Madelein R.; and Williamson, Kurt E., Seasonal Trends in Lysogeny in an Appalachian Oak-hickory Forest Soil (2023). Applied and Environmental Microbiology.
https://doi.org/10.1128/aem.01408-23
DOI
https://doi.org/10.1128/aem.01408-23