Document Type

Article

Department/Program

Mathematics

Journal Title

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

Pub Date

12-1-2016

Volume

307

Abstract

Four types of global error for initial value problems are considered in a common framework. They include classical forward error analysis and shadowing error analysis together with extensions of both to include rescaling of time. To determine the amplificatioh of the local error that bounds the global error we present a linear analysis similar in spirit to condition number estimation for linear systems of equations. We combine these ideas with techniques for dimension reduction of differential equations via a boundary value formulation of numerical inertial manifold reduction. These global error concepts are exercised to illustrate their utility on the Lorenz equations and inertial manifold reductions of the Kuramoto-Sivashinsky equation. (C) 2016 Elsevier B.V. All rights reserved.

DOI

10.1016/j.cam.2016.02.023

Share

COinS