Document Type
Article
Department/Program
Physics
Journal Title
Journal of Vacuum Science & Technology a
Pub Date
2016
Volume
34
Issue
2
Abstract
The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB2 thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T-C, the authors are the first to report on the correlation between stoichiometry and the lower critical field H-C1. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Recommended Citation
Beebe, Melissa R.; Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; and Lukaszew, R. Alejandra, Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films (2016). Journal of Vacuum Science & Technology a, 34(2).
10.1116/1.4940132
DOI
10.1116/1.4940132