Document Type

Article

Department/Program

Business

Pub Date

6-2017

Journal Title

Journal of Corporate Citizenship

Volume

66

Abstract

This study demonstrates the use of Text Data Mining (TDM) for exploring the content of a collection of Corporate Citizenship(CC) reports. The collection analyzed comprises CC reports produced by seven Dow Jones companies (Citi, Coca-Cola, ExxonMobil, General Motors, Intel, McDonalds and Microsoft) in2004, 2008 and 2012.Exploratory con-tent analysis using TDM enables insights for CC professionals and analysts, in less time using fewer resources, which in turn could help them explore collaboration opportunities around supply chains, re-training programs, and alternative risk mitigation strategies in terms of governance and compliance. In addition, TDM, using supervised machine learning on the whole collection (or corpus) as well as unsupervised machine learning on document collections by year, suggests the integration of CC considerations related to environmental sustain-ability in CC report components discussing the core business of some firms. This method has been used in many contexts in which a collection of documents needs to be categorized and/or analyzed to uncover new patterns and relationships.

DOI

10.9774/T&F.4700.2017.ju.00007

Journal Article URL

https://proxy.wm.edu/login?url=https://www.jstor.org/stable/26629170

Publisher Statement

This article has been accepted for publication in Journal of Corporate Citizenship, published by Routledge (Greenleaf Press).

Share

COinS