Date Awarded

2005

Document Type

Dissertation

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Applied Science

Advisor

David E Kranbuehl

Abstract

Changes in the ionic and dipolar molecular mobility in a polymer system are the basis for the changes in the dielectric mechanical properties of polymer materials. Frequency Dependent Dielectric Measurements (FDEMS) and Ion Time-of-Flight (ITOF) are two important techniques to investigate ionic and dipolar molecular mobility in polymer systems. The results can be related to the macro- and molecular dielectric, electrical and dynamic properties of polymeric materials. The combination of these two methods provides a full view of electric, dielectric and dynamic behavior for the systems as they undergo chemical and/or physical changes during polymerization crystallization, vitrification, and/or phase separation.;The research on microscopic mass mobility in polymer systems was done on three aspects: (1) ion mobility in an epoxy-amine reaction system; (2) dipolar mobility and relaxation during dimethacrylate resin cure and (3) dye molecule migration and diffusion in polymer films.;In the ion mobility study, we separately monitor the changes in the ion mobility and the number of charge carriers during the epoxy-amine polymerization with FDEMS and ITOF measurements. The isolation of the number of carriers and their mobility allows significant improvement in monitoring changes in the state and structure of a material as it cures.;For the dipolar mobility and relaxation study, FDEMS measurements were used to detect structural evolution and spatial heterogeneity formation during the polymerization process of dimethacrylate resins. The dielectric spectra, glass transition (Tg) profiles and dynamic mechanical measurements were used to investigate the existence of two cooperative regions of sufficient size to create two alpha-relaxation processes representing oligomer rich and polymer microgel regions during the polymerization.;For the dye migration research, we tried to develop a visually color changing paper (VCP) due to dye molecule migration in polymer films. The mobility of dye molecules in polyvinyl films was controlled by the acidity of the environment. Ionamine derivatives of dyes were stable when mixed with acid. their diffusion in polymer films can be quickly triggered as the result of an acid/base neutralization reaction. The effect of the type of base, acid and the compatibility of polymer films on the diffusion rate is discussed.

DOI

https://dx.doi.org/doi:10.21220/s2-p36q-nw09

Rights

© The Author

Share

COinS