Date Awarded

2005

Document Type

Dissertation

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Physics

Advisor

Anne C Reilly

Abstract

This dissertation presents an investigation on the effects of large scale roughness on the properties of giant magnetoresistive multilayers. The large scale roughness (sigmarms > 5 nm) is introduced into giant magnetoresistive thin films through the substrate. Current-in-plane (CIP) and current-perpendicular-to-the-plane (CPP) thin films were deposited by dc magnetron and triode sputtering. All films were characterized for roughness, magnetic and electronic behavior.;Our research on both pseudo spin valves and exchange-biased spin valves shows that long length scale roughness does not have a significant detrimental effect on GMR thin films. For the CIP films, we find that a decrease in GMR correlates to an increase in minimum film resistivity. as the minimum resistivity increased, the maximum resistivity increased linearly with a slope ∼1. This suggests that the decrease in GMR may primarily be an effect of increased spin-independent scattering resulting from the increased film roughness. The CPP films showed a similar relationship between minimum and maximum resistance. Studying the effect of such large scale substrate roughness is important for applications in which GMR multilayers are deposited on non-standard substrates and buffer layers including flexible media.

DOI

https://dx.doi.org/doi:10.21220/s2-12fg-tg10

Rights

© The Author

Share

COinS