Date Awarded
1996
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.)
Department
Applied Science
Advisor
Robert A Orwoll
Abstract
The development of boron-containing polymeric materials for neutron shielding applications was undertaken. Three types of materials were characterized for physical and thermal properties: boron powder-filled epoxy composites, carborane polyamides having boron chemically bonded into the polymer, and boron-loaded polyimide thin films. Addition of amorphous submicron boron powder did not affect significantly the thermal performance of the epoxy. The 17% boron loading produced a 26% increase in compressive failure strength and a 68% increase in the compressive modulus. 0.125 inch thick specimens containing 17% boron absorbed 92% of incident neutrons from a 5-Curie Pu/Be source compared with {dollar}<{dollar}1% for the neat epoxy. Dispersion of the boron in the epoxy was improved with the addition of larger size crystalline boron powders. Carborane polyamides containing up to 35% boron were thermally stable up to 400{dollar}\sp\circ{dollar}C in air. The polymers had hydrogen/boron ratios from 2.0 to 3.8 and were soluble in several organic solvents. Polymer solutions were processed into clear, colored thin films. Boron-filled polyamic acid solutions of a PMDA-ODA polyimide containing up to 10% boron were processed into thin films. Neutron absorption of the opaque films measured in a 5-Curie Pu/Be neutron source was linear with boron concentration and film thickness. The fraction of neutrons absorbed varied linearly with boron concentration and film thickness. The applicability of boron-containing materials to the aerospace, nuclear power and accelerator industries was investigated.
DOI
https://dx.doi.org/doi:10.21220/s2-pj26-2v30
Rights
© The Author
Recommended Citation
Glasgow, Michael B., "Synthesis and characterization of boron-containing polymeric materials for neutron shielding applications" (1996). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1539623878.
https://dx.doi.org/doi:10.21220/s2-pj26-2v30
Included in
Nuclear Commons, Polymer Chemistry Commons, Polymer Science Commons