Date Awarded

Winter 2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Applied Science

Advisor

Robert Vold

Abstract

The purpose of devising and validating models for intramolecular motions for FMOC amino acids is to quantify side chain motion in proteins which plays an important role in understanding biological structure function relations of proteins. In this thesis, spin lattice relaxation times (Ti) of FMOC amino acids were m easured under both static and magic angle spinning (MAS) condition at variable tem peratures. Lower activation energies of the relaxation times than the normal amino acids observed indicate a less sterically crowded environment for the rotation methyl group. A three-site jump model for the methyl group w as developed to fit the Tiz and Tiq anisotropy under static condition. Under MAS, Multiple deuterated sites can be resolved and studied independently. Finally, a tem perature model for the spinning rotor w as developed to account for the tem perature gradient across the rotor. A com parison of using the single most probable tem perature and the tem perature distribution in the simulation of relaxation times concludes the difference between th ese two approaches is minimal.

DOI

https://doi.org/10.21220/3fhf-xz16

Rights

© The Author

Share

COinS