ORCID ID
https://orcid.org/0000-0001-7558-9479
Date Awarded
2021
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.)
Department
Computer Science
Advisor
Qun Li
Committee Member
Qun Li
Committee Member
Weizhen Mao
Committee Member
Adwait Jog
Committee Member
Dmitry Evtyushkin
Abstract
Isolation is a fundamental paradigm for secure and efficient resource sharing on a computer system. However, isolation mechanisms in traditional cloud computing platforms are heavy-weight or just not feasible to be applied onto the computing environment for Internet of Things(IoT). Most IoT devices have limited resources and their servers are less powerful than cloud servers but are widely distributed over the edge of the Internet. Revisions to the traditional isolation mechanisms are needed in order to improve the system security and efficiency in these computing environments. The first project explores container-based isolation for the emerging edge computing platforms. We show a performance issue of live migration between edge servers where the file system transmission becomes a bottleneck. Then we propose a solution that leverages a layered file system for synchronization before the migration starts, avoiding the usage of impractical networking shared file system as in the traditional solution. The evaluation shows that the migration time is reduced by 56% – 80%. In the second project, we propose a lightweight security monitoring service for edge computing platforms, base on the virtual machine isolation technique. Our framework is designed to monitor program activities from underneath of an operating system, which improves its transparency and avoids the cost of embedding different monitor modules into each layer inside the operating system. Furthermore, the monitor runs in a single process virtual machine which requires only ≤32MB of memory, reduces the scheduling overhead, and saves a significant amount of physical memory, while the performance overhead is an average of 2.7%. In the third project, we co-design the hardware and software system stack to achieve efficient fine-grained intra-address space isolation. We propose a systematic solution to partition a legacy program into multiple security compartments, which we call capsules, with isolation at byte granularity. Vulnerabilities in one capsule will not likely affect another capsule. The isolation is guaranteed by our hardware-based ownership types tagged to every byte in the memory. The ownership types are initialized, propagated, and checked by combining both static and dynamic analysis techniques. Finally, our co-design approach could remove most human refactoring efforts while avoiding the untrustworthiness as well as the cost of the pure software approaches. In brief, this proposal explores a spectrum of isolation techniques and their improvementsfor the IoT computing environment. With our explorations, we have shown the necessity to revise the traditional isolation mechanisms in order to improve the system efficiency and security for the edge and IoT platforms. We expect that many more opportunities will be discovered and various kinds of revised or new isolation mechanisms for the edge and IoT platforms will emerge soon.
DOI
https://dx.doi.org/10.21220/s2-sqd8-hs55
Rights
© The Author
Recommended Citation
Ma, Lele, "Revisiting Isolation For System Security And Efficiency In The Era Of Internet Of Things" (2021). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1673273635.
https://dx.doi.org/10.21220/s2-sqd8-hs55