ORCID ID
https://orcid.org/0000-0002-6902-2780
Date Awarded
2022
Document Type
Dissertation
Degree Name
Doctor of Philosophy (Ph.D.)
Department
Physics
Advisor
Eugeniy E. Mikhailov
Committee Member
Irina Novikova
Committee Member
Todd Averett
Committee Member
William Cooke
Committee Member
Lior Cohen
Abstract
In high-precision optical measurements, noise due to quantum fluctuations in the amplitude and phase of the probing field becomes the limiting factor in detection sensitivity. While this quantum noise is fundamental and not a result of detection, it is possible to engineer a quantum state that has reduced noise in either amplitude or phase (at the cost of increasing noise in the other) called a quadrature-squeezed state. In this dissertation, we study the use of quadrature-squeezed vacuum states for low-light imaging and develop a quantum detection method to measure the spatial dependence of the quantum noise using a camera instead of the traditional homodyne detection. Our novel quantum imaging scheme paves the way for ultra-low-light imaging due to the inherently few photons in the squeezed vacuum state. We also expand the method beyond camera limitations using single-pixel imaging techniques, making the detection method accessible to a broad range of wavelengths where quantum-limited cameras may be difficult to find.
DOI
https://dx.doi.org/10.21220/s2-e8qp-2434
Rights
© The Author
Recommended Citation
Cuozzo, Savannah, "Quantum Sensing For Low-Light Imaging" (2022). Dissertations, Theses, and Masters Projects. William & Mary. Paper 1673281653.
https://dx.doi.org/10.21220/s2-e8qp-2434