Document Type



Virginia Institute of Marine Science

Publication Date



Environmental Toxicology

First Page


Last Page



There are different ways contaminants can interact and enhance the effects of habitat fragmentation, such as modifying the movement of organisms. The present study tested the hypothesis that mercury exacerbates the effects of
fragmentation by affecting the movement of the marsh periwinkle Littoraria irrorata and reducing the probability of snails crossing fragmented microlandscape experimental systems. How these changes could affect the search efficiency of organisms in the long term was assessed using hidden Markov models and random walks simulations. Bayesian nonlinear
models were used to analyze the effects of fragmentation and contamination on the mean speed and mean directional change of organisms. Snail movement for control and two mercury‐exposure treatments were recorded in microlandscapes
with six different levels of habitat cover and three landscape replicates. The results indicated that exposed organisms had lower probabilities of crossing the landscape, reduced speed, and shifts in step length distributions. Both mercury exposure and habitat fragmentation affected the movement of the marsh periwinkle. Mercury exacerbated the effects of habitat fragmentation by affecting the cognition (e.g., route planning, orientation, and spatial learning) and movement of L. irrorata. Hence, the interaction of these stressors could further reduce the functional connectivity of landscapes and reduce the search
efficiency of organisms.


DOI: 10.1002/etc.5351


Mercury; Habitat fragmentation; Multiple stressors; Movement; Hidden Markov models

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.