Document Type



Virginia Institute of Marine Science

Publication Date



Reviews in Fish Biology and Fisheries


Marine population modeling, which underpins the scientific advice to support fisheries interventions, is an active research field with recent advancements to address modern challenges (e.g., climate change) and enduring issues (e.g., data limitations). Based on discussions during the ‘Land of Plenty’ session at the 2021 World Fisheries Congress, we synthesize current challenges, recent advances, and interdisciplinary developments in biological fisheries models (i.e., data-limited, stock assessment, spatial, ecosystem, and climate), management strategy evaluation, and the scientific advice that bridges the science-policy interface. Our review demonstrates that proliferation of interdisciplinary research teams and enhanced data collection protocols have enabled increased integration of spatiotemporal, ecosystem, and socioeconomic dimensions in many fisheries models. However, not all management systems have the resources to implement model-based advice, while protocols for sharing confidential data are lacking and impeding research advances. We recommend that management and modeling frameworks continue to adopt participatory co-management approaches that emphasize wider inclusion of local knowledge and stakeholder input to fill knowledge gaps and promote information sharing. Moreover, fisheries management, by which we mean the end-to-end process of data collection, scientific analysis, and implementation of evidence-informed management actions, must integrate improved communication, engagement, and capacity building, while incorporating feedback loops at each stage. Increasing application of management strategy evaluation is viewed as a critical unifying component, which will bridge fisheries modeling disciplines, aid management decision-making, and better incorporate the array of stakeholders, thereby leading to a more proactive, pragmatic, transparent, and inclusive management framework–ensuring better informed decisions in an uncertain world.


doi: 10.1007/s11160-022-09726-7

11160_2022_9726_MOESM1_ESM.docx (26 kB)
Supplementary material