Document Type

Article

Department/Program

Virginia Institute of Marine Science

Publication Date

2017

Journal

Earth Surface Dynamics

Volume

5

Issue

3

First Page

417

Last Page

427

Abstract

Coastal foredunes form along sandy, low-sloped coastlines and range in shape from continuous dune ridges to hummocky features, which are characterized by alongshore-variable dune crest elevations. Initially scattered dune-building plants and species that grow slowly in the lateral direction have been implicated as a cause of foredune "hummockiness". Our goal in this work is to explore how the initial configuration of vegetation and vegetation growth characteristics control the development of hummocky coastal dunes including the maximum hummockiness of a given dune field. We find that given sufficient time and absent external forcing, hummocky foredunes coalesce to form continuous dune ridges. Model results yield a predictive rule for the timescale of coalescing and the height of the coalesced dune that depends on initial plant dispersal and two parameters that control the lateral and vertical growth of vegetation, respectively. Our findings agree with previous observational and conceptual work - whether or not hummockiness will be maintained depends on the timescale of coalescing relative to the recurrence interval of high-water events that reset dune building in low areas between hummocks. Additionally, our model reproduces the observed tendency for foredunes to be hummocky along the southeast coast of the US where lateral vegetation growth rates are slower and thus coalescing times are likely longer.

DOI

10.5194/esurf-5-417-2017

Keywords

Uniola-Paniculata L; Barrier-Island; North-Carolina; Ammophila-Breviligulata; Sediment Transport; Dune Development; Atlantic Coast; Vascular Flora; Sand Transport; Climate-Change

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS