Document Type



Virginia Institute of Marine Science

Publication Date



Ices Journal Of Marine Science





First Page


Last Page



Atlantic menhaden, Brevoortia tyrannus, is an abundant, schooling pelagic fish that is widely distributed in the coastal Northwest Atlantic. It supports the largest single-species fishery by volume on the east coast of the United States. However, relatively little is known about factors that control recruitment, and its stock- recruitment relationship is poorly defined. Atlantic menhaden is managed as a single unit stock, but fisheries and environmental variables likely act regionally on recruitments. To better understand spatial and temporal variability in recruitment, fishery-independent time-series (1959-2013) of young-of-year (YOY) abundance indices from the Mid-Atlantic to Southern New England (SNE) were analysed using dynamic factor analysis and generalized additive models. Recruitment time-series demonstrated low-frequency variability and the analyses identified two broad geographical groupings, the Chesapeake Bay (CB) and SNE. Each of these two regions exhibited changes in YOY abundance and different periods of relatively high YOY abundance that were inversely related to each other; CB indices were highest from ca. 1971 to 1991, whereas SNE indices were high from ca. 1995 to 2005. Wetested for effects of climatic, environmental, biological, and fishing-related variables that have been documented or hypothesized to influence stock productivity. Abroad-scale indicator of climate, the Atlantic Multidecadal Oscillation, was the best single predictor of coast-wide recruitment patterns, and had opposing effects on the CB and SNE regions. Underlying mechanisms of spatial and interannual variability in recruitment likely derive from interactions among climatology, larval transport, adult menhaden distribution, and habitat suitability. The identified regional patterns and climatic effects have implications for the stock assessment of Atlantic menhaden, particularly given the geographically constrained nature of the existing fishery and the climatic oscillations characteristic of the coastal ocean.




Chesapeake Bay; Multidecadal Oscillation; Density-Dependence; Fish Recruitment; Larval Transport; Common Trends; United-States; Time-Series; East-Coast; Climate