Document Type
Article
Department/Program
Data Science
Department
Biology
Journal Title
BMC Microbiology
Pub Date
4-2024
Publisher
Springer Nature
Volume
24
Issue
107
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Background
Belonging to the Actinobacteria phylum, members of the Rhodococcus genus thrive in soil, water, and even intracellularly. While most species are non-pathogenic, several cause respiratory disease in animals and, more rarely, in humans. Over 100 phages that infect Rhodococcus species have been isolated but despite their importance for Rhodococcus ecology and biotechnology applications, little is known regarding the molecular genetic interactions between phage and host during infection. To address this need, we report RNA-Seq analysis of a novel Rhodococcus erythopolis phage, WC1, analyzing both the phage and host transcriptome at various stages throughout the infection process.
Results
By five minutes post-infection WC1 showed upregulation of a CAS-4 family exonuclease, putative immunity repressor, an anti-restriction protein, while the host showed strong upregulation of DNA replication, SOS repair, and ribosomal protein genes. By 30 min post-infection, WC1 DNA synthesis genes were strongly upregulated while the host showed increased expression of transcriptional and translational machinery and downregulation of genes involved in carbon, energy, and lipid metabolism pathways. By 60 min WC1 strongly upregulated structural genes while the host showed a dramatic disruption of metal ion homeostasis. There was significant expression of both host and phage non-coding genes at all time points. While host gene expression declined over the course of infection, our results indicate that phage may exert more selective control, preserving the host’s regulatory mechanisms to create an environment conducive for virion production.
Conclusions
The Rhodococcus genus is well recognized for its ability to synthesize valuable compounds, particularly steroids, as well as its capacity to degrade a wide range of harmful environmental pollutants. A detailed understanding of these phage-host interactions and gene expression is not only essential for understanding the ecology of this important genus, but will also facilitate development of phage-mediated strategies for bioremediation as well as biocontrol in industrial processes and biomedical applications. Given the current lack of detailed global gene expression studies on any Rhodococcus species, our study addresses a pressing need to identify tools and genes, such as F6 and rpf, that can enhance the capacity of Rhodococcus species for bioremediation, biosynthesis and pathogen control.
Recommended Citation
Willner, Dana; Paudel, Sudip; Halleran, Andrew D.; Solini, Grace E.; Gray, Veronica; and Saha, Margaret, Transcriptional Dynamics During Rhodococcus erythropolis Infection with Phage WC1 (2024). BMC Microbiology, 24(107).
https://doi.org/10.1186/s12866-024-03241-4
DOI
https://doi.org/10.1186/s12866-024-03241-4