Date Awarded

2003

Document Type

Dissertation

Degree Name

Doctor of Philosophy (Ph.D.)

Department

Applied Science

Advisor

Gunter Lüpke

Abstract

This thesis presents measurements of collective modes and ultrafast carrier relaxation dynamics in charge-density-wave (CDW) conductors and colossal magnetoresistance (CMR) manganites. A femtosecond laser pump pulse excites a broad frequency spectrum of low-energy collective modes and electron-hole pairs thereby changing its optical properties. The low-energy collective excitations and quasiparticle relaxation and recombination processes are monitored by measuring the resulting photoinduced absorption as a function of probe pulse wavelength and time delay.;A general model was developed for the photogeneration and detection mechanism of collective modes based on light absorption in two-color pump-probe experiments. A broad spectrum of collective modes (phasons and amplitudons) with frequencies down to a few GHz is excited and propagates normal to the surface into the material. The dispersion of the long-wavelength phason and amplitudon can be measured by changing the probe wavelength.;The first pump-probe spectroscopy was performed from the ultraviolet to mid-infrared wavelength range to study low-frequency collective excitations, including temperature evolution, dispersion, damping, and anisotropy of amplitude mode and transverse phason in quasi-one dimensional CDW conductors, K 0.3MoO3 and K0.33MoO3 on ultrafast time scale. The transverse phason exhibits an acoustic-like dispersion relation in the frequency range from 5--40 GHz. The phason velocity is strongly anisotropic with a very weak temperature dependence. In contrast, the amplitude mode exhibits a weak (optic-like) dispersion relation with a frequency of 1.66 THz at 30 K.;The studies were extended to doped perovskite manganite thin films and single crystals. A low-energy collective mode is observed and discussed in terms of the opening of a pseudogap resulting from charge/orbital ordering phases. The softening of the collective mode is necessary to explain by combining a cooperative Jahn-Teller type distortion of the MnO6 octahedra with the collective mode. The quasiparticle dynamics in the vicinity of the metal-insulator transition is strongly affected by the presence of a pseudogap, phase separation and percolation, which are strongly dependent on temperature. A very long-lived relaxation process is observed due to a slow spin relaxation process. The dynamics of the spin system is further investigated in strained and unstrained thin films, which show a strong strain effect.

DOI

https://dx.doi.org/doi:10.21220/s2-p9sh-7514

Rights

© The Author

Share

COinS