Date Thesis Awarded

5-2021

Access Type

Honors Thesis -- Open Access

Degree Name

Bachelors of Science (BS)

Department

Neuroscience

Advisor

Christopher Del Negro

Committee Members

Jennifer Bestman

Dana Lashley

Randolph Coleman

Abstract

The pedunculopontine nucleus (PPN) comprises the mesencephalic locomotor region (MLR) of the midbrain. It contains glutamatergic, cholinergic, and GABAergic interneurons, but only glutamatergic neurons influence locomotion, which is our focus here. The PPN receives upstream and downstream input from the basal ganglia. It projects to the reticular formation of the brainstem, which connects to the spinal cord. The PPN is involved in a wide range of physiological and behavioral processes, but our focus is locomotion. We hypothesize that the PPN influences the reticular activating system (RAS) of the medulla and thus the central pattern generators (CPG) in the spinal cord via CaV3.1 proteins, which are voltage gated low-threshold Ca2+ channels. We contend that CaV3.1 proteins are evoked by disinhibition and mediate burst responses that cause downstream postsynaptic activation of the RAS and ultimately the CPG in the spinal cord. To test this idea, this study aims to study the down regulation of CaV3.1 proteins by the knockdown of its underlying gene, Cacna1g via shRNA payloads during viral vector delivery. We employed multiplex in situ hybridization (i.e., RNAScope) to confirm the down regulation of Cacna1g mRNA, leading to the suppression of CaV3.1. The Covid-19 pandemic significantly delayed the work, and my collaborator did not mark the mice that received scramble control and Cacna1g shRNA viruses. Therefore, we do not have comparable results for whether CaV3.1 is knocked down.

Share

COinS