Date Thesis Awarded
5-2009
Access Type
Honors Thesis -- Access Restricted On-Campus Only
Degree Name
Bachelors of Science (BS)
Department
Physics
Advisor
Irina Novikova
Committee Members
Gina L. Hoatson
Seth Aubin
Hannes Schniepp
Abstract
I worked on constructing an optical filtering device to resolve two separate laser fields very close in frequency which are nearly collinear. It has been demonstrated to be able to achieve four order of magnitude in improvement in the resolution between two laser fields separated by less than a milliradian under ideal conditions. The size of the input fields and pinhole were optimized, and it was found that for our apparatus the field to be filtered should be 3.6 mm in diameter and wanted field to be 2.4 mm with a 0.5 mm pinhole.Such an optical filter will be applied improve the data quality of Prof. Novikova's stored light experiment, which requires two beams, one much more powerful than the other, that exit the experiment nearly collinear such that standard filtering methods are not sufficient. When applied to this experiment, the filter is demonstrated to improve resolution by two orders of magnitude under unideal conditions, and great improvement in performance is expected. The results of experiments to optimize the adjustable parameters of optical vortex coronagraph design, such as the size of the pinhole, control, and probe fields, and the topological charge of the vortex used are presented, and proposed improvements to the coronagraph design discussed.
Recommended Citation
Ames, William, "Optical Filtering with Phase Singularities" (2009). Undergraduate Honors Theses. William & Mary. Paper 271.
https://scholarworks.wm.edu/honorstheses/271
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Comments
Thesis is part of Honors ETD pilot project, 2008-2013. Migrated from Dspace in 2016.