Date Thesis Awarded
5-2010
Access Type
Honors Thesis -- Access Restricted On-Campus Only
Degree Name
Bachelors of Science (BS)
Department
Neuroscience
Advisor
Paul D. Heideman
Committee Members
John D. Griffin
Beverly Sher
Abstract
A thorough understanding of genetic variation within a population as well as gene-environment interaction is essential in the clinical prediction and manipulation of physiological phenotypes. In a human population, many incidences of infertility are of a genetic origin, and up to 25% have no apparent cause (Roupa et al, 2009). Environmental cues interact with genetics to modulate reproductive status; a lack of sufficient nutrient intake can result in infertility in a genetically normal mouse or human (Mitan, 2004). In addition, increasing evidence indicates that genetic variability in the concentration of specific neurotransmitters and circulating hormones can confer varying degrees of vulnerability or resistance to the onset of obesity by regulating appetite and metabolism (Palmiter, 2009; Beck, 2000). The development of an animal model is essential for the examination of genetic variability, phenotypic plasticity and gene-environment interactions. However, many models, including lab mice and rats, are completely unlike human populations in genetic structure, providing little insight into genetic variability in appetite and fertility in humans (Smale et al, 2005). A wild-derived animal model, therefore, shows the most promise in elucidating the interaction between environmental and genetic contributions to infertility and obesity.
Recommended Citation
DeSanto, Cori Lynn, "Food Intake and Fertility: Variation in the Regulation of Appetite and its Role in Reproductive Status" (2010). Undergraduate Honors Theses. William & Mary. Paper 736.
https://scholarworks.wm.edu/honorstheses/736
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Comments
Thesis is part of Honors ETD pilot project, 2008-2013. Migrated from Dspace in 2016.