Document Type

Article

Department/Program

Virginia Institute of Marine Science

Publication Date

2001

Journal

Journal of Immunology

Volume

166

Issue

4

First Page

2617

Last Page

2626

Abstract

Aging has been associated with intrinsic changes of the humoral immune response, which may lead to an increased occurrence of autoimmune disorders and pathogenic susceptibility. The transcription factor Pax-5 is a key regulator of B cell development. Pax-5a/B cell-specific activator protein and an alternatively spliced isoform, Pax-Sd, may have opposing functions in transcriptional regulation due to the lack of a transactivation domain in Pax-Sd. To study B cell-specific changes that occur during the aging process, we investigated expression patterns of Pax-Sa and Sd in mature B cells of young and aged mice. RNase protection assays showed a similar transcriptional pattern for both age groups that indicates that aging has no affect on transcription initiation or alternative splicing for either isoform, In contrast, a significant reduction in the DNA binding activity of Pax-Sa but not Pax-Sd protein was observed in aged B cells in vitro, while Western blot analyses showed that similar levels of Pax-Sa and Sd proteins were present in both age groups. The observed decrease in Pax-Sa binding activity correlated with changes in expression of two Pax-5 target genes in aged B cells, Expression of the Ig J chain and the secreted form of Ig mu, which are both known to be suppressed by Pax-Sa in mature B cells, were increased in B cells of aged mice, Together, our studies suggest that changes associated with the aging phenotype cause posttranslational modification(s) of Pax-Sa but not Pax-Sd, which may lead to an abnormal B cell phenotype in aged mice, associated with elevated levels of J chain, and secretion of IgM.

DOI

10.4049/jimmunol.166.4.2617

Keywords

Cell Differentiation; Factor Bsap; Activator Protein; Chain Gene; 3'Alpha Enhancer; Nf-Hb

Share

COinS