Document Type

Article

Department/Program

Virginia Institute of Marine Science

Publication Date

2021

Journal

JGR Oceans

Volume

126

Issue

6

First Page

e2021JC017239

Abstract

Understanding decadal changes in the coastal carbonate system is essential for predicting how the health of these waters responds to anthropogenic drivers, such as changing atmospheric conditions and riverine inputs. However, studies that quantify the relative impacts of these drivers are lacking. In this study, the primary drivers of decadal trends in the surface carbonate system, and the spatiotemporal variability in these trends, are identified for a large coastal plain estuary: the Chesapeake Bay. Experiments using a coupled three-dimensional hydrodynamic-biogeochemical model highlight that, over the past three decades, the changes in the surface carbonate system of Chesapeake Bay have strong seasonal and spatial variability. The greatest surface pH and aragonite saturation state (ΩAR) reductions have occurred in the summer in the middle (mesohaline) Bay: −0.24 and −0.9 per 30 years, respectively, with increases in atmospheric CO2 and reductions in nitrate loading both being primary drivers. Reductions in nitrate loading have a strong seasonal influence on the carbonate system, with the most pronounced decadal decreases in pH and ΩAR occurring during the summer when primary production is strongly dependent on nutrient availability. Increases in riverine total alkalinity and dissolved inorganic carbon have raised surface pH in the upper oligohaline Bay, while other drivers such as atmospheric warming and input of acidified ocean water through the Bay mouth have had comparatively minor impacts on the estuarine carbonate system. This work has significant implications for estuarine ecosystem services, which are typically most sensitive to surface acidification in the spring and summer seasons.

DOI

doi: 10.1029/2021JC017239

2021jc017239-sup-0001-supporting information si-s01.pdf (4335 kB)
Supporting Information S1

Included in

Oceanography Commons

Share

COinS