Document Type

Article

Department/Program

Virginia Institute of Marine Science

Publication Date

2021

Journal

Limnology and Oceanography

Volume

66

Issue

7

First Page

2810

Last Page

2626

Abstract

Understanding the ecological interactions that enhance the resilience of threatened ecosystems is essential in assuring their conservation and restoration. Top-down trophic interactions can increase resilience to bottom-up nutrient enrichment, however, as many seagrass ecosystems are threatened by both eutrophication and trophic modifications, understanding how these processes interact is important. Using a combination of approaches, we explored how bottom-up and top-down processes, acting individually or in conjunction, can affect eelgrass meadows and associated communities in the northern Baltic Sea. Field surveys along with fish diet and stable isotope analyses revealed that the eelgrass trophic network included two main top predatory fish species, each of which feeds on a separate group of invertebrate mesograzers (crustaceans or gastropods). Mesograzer abundance in the study area was high, and capable of mitigating the effects of increased algal biomass that resulted from experimental nutrient enrichment in the field. When crustacean mesograzers were experimentally excluded, gastropod mesograzers were able to compensate and limit the effects of nutrient enrichment on eelgrass biomass and growth. Our results suggest that top-down processes (i.e., suppression of algae by different mesograzer groups) may ensure eelgrass resilience to nutrient enrichment in the northern Baltic Sea, and the existence of multiple trophic pathways can provide additional resilience in the face of trophic modifications. However, the future resilience of these meadows is likely threatened by additional local stressors and global environmental change. Understanding the trophic links and interactions that ensure resilience is essential for managing and conserving these important ecosystems and the services they provide.

DOI

doi: 10.1002/lno.11792

Keywords

Diatoms; Iron limitation; Metatranscriptomics; Southern Ocean; Temperature

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

lno11792-sup-0001-supinfo.docx (396 kB)
Supplementary Material

Share

COinS