Document Type

Article

Department/Program

Virginia Institute of Marine Science

Publication Date

1-13-2023

Journal

Aquaculture

Volume

562

Issue

738714

Abstract

As the start of the supply chain for the aquaculture industry, hatcheries are a crucial component in the success of oyster and northern quahog (hard clam) aquaculture on the East Coast of the US. Intermittent failures in hatchery production slow industry growth and reduce profits. To begin investigations into the possible role of algal toxins in hatchery production failure, post-treatment hatchery water from one research and four commercial hatcheries in lower Chesapeake Bay, USA, was sampled for (1) toxin presence and (2) harmful algal bloom (HAB) cell enumeration. Overall, seven toxin classes, likely produced by six different HAB species, were detected in post- treatment hatchery water, despite a lack of visually identifiable HAB cells within the facility. Toxins detected include pectenotoxin-2, goniodomin A, karlotoxin-1 and karlotoxin-3, okadaic acid and dinophysistoxin-1, azaspiracid-1 and azaspiracid-2, brevetoxin-2, and microcystin-LR. In a second, more targeted study, two batches of source water were followed and sampled at each step of a water-treatment process in the VIMS Aquaculture Genetics and Breeding Technology Center research hatchery in Gloucester Point, Virginia, USA. Two treatment steps showed particular promise for decreasing the concentrations of the three toxins detected in the source water, 24-h circulation through sand filters and activated charcoal filtration. Toxin concentrations of pectenotoxin-2, 3.53 ± 0.56 pg mL

DOI

doi: 10.1016/j.aquaculture.2022.738714

Keywords

Harmful algae Toxins, Shellfish hatcheries, Water treatment, Aquaculture health

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS