Document Type
Article
Department/Program
Virginia Institute of Marine Science
Publication Date
2000
Journal
Toxicological Sciences
Volume
56
First Page
8
Last Page
17
DOI
Both qualitative and quantitative modeling methods relating chemical structure to biological activity, called structure-activity relationship analyses or SAR, are applied to the prediction and characterization of chemical toxicity. This minireview will discuss some generic issues and modeling approaches that are tailored to problems in toxicology. Different approaches to, and some facets and limitations of the practice and science of, SAR as they pertain to current toxicology analyses, and the basic elements of SAR and SAR-model development and prediction systems are discussed. Other topics include application of 3-D SAR to understanding of the propensity of chemicals to cause endocrine disruption, and the use of models to analyze biological activity of metal ions in toxicology. An example of integration of knowledge pertaining to mechanisms into an expert system for prediction of skin sensitization to chemicals is also discussed. This minireview will consider the utility of modeling approaches as one component for better integration of physicochemical and biological properties into risk assessment, and also consider the potential for both environmental and human health effects of chemicals and their interactions.
Keywords
structure-activity relationships (SAR), SAR science, elements, models, prediction systems, issues in toxicology
Recommended Citation
McKinney, James D.; Richard, Ann; Waller, Chris; Newman, Michael C.; and Gerberick, Frank, The Practice of Structure Activity Relationships (SAR) in Toxicology (2000). Toxicological Sciences, 56, 8-17.
Both qualitative and quantitative modeling methods relating chemical structure to biological activity, called structure-activity relationship analyses or SAR, are applied to the prediction and characterization of chemical toxicity. This minireview will discuss some generic issues and modeling approaches that are tailored to problems in toxicology. Different approaches to, and some facets and limitations of the practice and science of, SAR as they pertain to current toxicology analyses, and the basic elements of SAR and SAR-model development and prediction systems are discussed. Other topics include application of 3-D SAR to understanding of the propensity of chemicals to cause endocrine disruption, and the use of models to analyze biological activity of metal ions in toxicology. An example of integration of knowledge pertaining to mechanisms into an expert system for prediction of skin sensitization to chemicals is also discussed. This minireview will consider the utility of modeling approaches as one component for better integration of physicochemical and biological properties into risk assessment, and also consider the potential for both environmental and human health effects of chemicals and their interactions.