Document Type
Article
Department/Program
Virginia Institute of Marine Science
Publication Date
2017
Journal
NATURE COMMUNICATIONS
Volume
8
Abstract
The combined effects of anthropogenic and biological CO2 inputs may lead to more rapid acidification in coastal waters compared to the open ocean. It is less clear, however, how redox reactions would contribute to acidification. Here we report estuarine acidification dynamics based on oxygen, hydrogen sulfide (H2S), pH, dissolved inorganic carbon and total alkalinity data from the Chesapeake Bay, where anthropogenic nutrient inputs have led to eutrophication, hypoxia and anoxia, and low pH. We show that a pH minimum occurs in mid-depths where acids are generated as a result of H2S oxidation in waters mixed upward from the anoxic depths. Our analyses also suggest a large synergistic effect from river-ocean mixing, global and local atmospheric CO2 uptake, and CO2 and acid production from respiration and other redox reactions. Together they lead to a poor acid buffering capacity, severe acidification and increased carbonate mineral dissolution in the USA's largest estuary.
DOI
10.1038/s41467-017-00417-7
Keywords
DISSOLVED INORGANIC CARBON; OCEAN ACIDIFICATION; COASTAL WATERS; ANOXIC WATERS; RIVER ESTUARY; CO2 SYSTEM; BIOGEOCHEMICAL PROCESSES; INDUCED DESTRATIFICATION; MARINE ECOSYSTEMS; DIOXIDE SYSTEM
Sponsor
This work was supported by internal funds from the University of Delaware Provost's office and the College of Earth, Ocean and Environment Dean's office to W.-J.C., by grants from the National Science Foundation (NSF OCE-1559312) and NASA (NNX14AM37G) to W.-J.C., by grants from NSF (OCE-1155385) and the U.S. National Oceanic and Atmospheric Administration (NOAA) Sea Grant program (NA14OAR4170087) to G.W.L., and a NOAA grant to J.T., W.-J.C., M.L., G.G.W., J.C., and W.M.K. (NA15NOS4780190, publication # 17-001). We thank Xinping Hu for discussion and the Chesapeake Bay Program and the Maryland Department of Natural Resources for the monitoring data. This is UMCES publication number 5369.
Recommended Citation
Cai, Wei-Jun; Huang, Wei-Jen; Luther, George W. III; Pierrot, Denis; Li, Ming; Testa, Jeremy; Xue, Ming; Joesoef, Andrew; Mann, Roger L.; Brodeur, Jean; Xu, Yuan-Yuan; Chen, Baoshan; Hussain, Najid; Waldbusser, George G.; Cornwell, Jeffery; and Kemp, W. Michael, Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay (2017). NATURE COMMUNICATIONS, 8.
10.1038/s41467-017-00417-7