Document Type

Article

Department/Program

Virginia Institute of Marine Science

Publication Date

2016

Journal

Sedimentology

Volume

63

Issue

6

First Page

1362

Last Page

1395

Abstract

Thick bay-fill sequences that often culminate in strandplain development serve as important sedimentary archives of land-ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground-penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes - notably a reduction in wave energy in response to coastal embayment infilling - in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4m highstand at ca 58ka, the 75km(2) Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi-enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive-regressive sequence, and backed by a highstand barrier-island. The strandplain is immediately underlain by 5 to 16m of seaward-thickening, fluvially derived, Holocene-age, basin-fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand-dominated to mud-dominated; (ii) beachface slopes decrease from >11 degrees to ca 7 degrees; and (iii) progradation rates increase from 04 to 18myr(-1). Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea-level fall and sediment infilling and a decrease in onshore wave-energy transport from 18 to 4kWm(-1). The combination of allogenic (sediment supply, falling relative sea-level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.

DOI

10.1111/sed.12265

Keywords

Sea-Level Change; Santa-Catarina; Southern Brazil; Beach Ridges; Climate-Change; Chenier Plain; West-Africa; Transgressive Dunefields; Southeastern Australia; Quaternary Evolution

Share

COinS