Files

Download

Download Full Text (1014 KB)

Document Type

Book Chapter

Department/Program

Virginia Institute of Marine Science

Editors

Mark W. Luckenbach, Roger Mann, James A. Wesson

Publication Date

1999

Book Title

Oyster reef habitat restoration : a synopsis and synthesis of approaches ; proceedings from the symposium, Williamsburg, Virginia, April 1995

Publisher

VIMS Press

City

Gloucester Point, VA

Abstract

Filtration rates for oysters have typically been measure in still water laboratory experiments and ecosystem-level effects estimated by extrapolation. With the exception of in situ measures of oyster filtration by Dame (1999, Chapter 18, this volume and references cited therein) these estimates have failed to account for the effects of hydrodynamic effects on oyster filtration rates and on physical redistribution of particles. In this chapter we report on a series of experiments conducted in a recirculating seawater flume designed to address the effects of flow speed and seston composition on filtration rates in a bed of oysters. In six separate experiments ninety oysters were arranged in the bed of the flume, flow speed adjusted to one of eight levels (0.65, 1.0, 2.1, 4.2, 6.0, 10.4, 13.7 or 22.0 cm s·1 ), seston added to the flume and particle concentrations upstream and downstream of the oyster bed determined from vertically-arrayed samples. Four experiments investigated the effects of each flow speed on the filtration of a unialgal diet, while two experiments utilized the algal diet in combination with inorganic particles. Control experiments sought to estimate the effects hydrodynamic effects on particle distribution by measuring "filtration" rates over beds of ninety pairs of empty oyster valves. Our findings reveal effects of flow speed and, less evidently, seston composition on particle filtration by oysters. More importantly, our results point to the importance of hydrodynamically-mediated particle redistribution of particles over patches of oysters, and portend sampling difficulties associated with quantifying oyster filtration rates in the field.

Materials Processing by Oysters in Patches: Interactive Roles of Current Speed and Seston Composition

Share

COinS